Section 4: Piping System Design

4.1 Introduction

4.1.1 This section provides accepted corrosion control practices in the design of an underground or submerged piping system. A person qualified to engage in the practice of corrosion control should be consulted during all phases of pipeline design and construction (see Paragraph 1.3). These recommendations should not be construed as taking precedence over recognized electrical safety practices.

4.2 External Corrosion Control

4.2.1 External corrosion control must be a primary consideration during the design of a piping system. Materials selection and coatings are the first line of defense against external corrosion. Because perfect coatings are not feasible, cathodic protection must be used in conjunction with coatings. For additional information, see Sections 5 and 6.

4.2.2 New piping systems should be externally coated unless thorough investigation indicates that coatings are not required (see Section 5).

4.2.3 Materials and construction practices that create electrical shielding should not be used on the pipeline. Pipelines should be installed at locations where proximity to other structures and subsurface formations do not cause shielding.

4.3 Electrical Isolation

4.3.1 Isolation devices such as flange assemblies, prefabricated joint unions, or couplings should be installed within piping systems where electrical isolation of portions of the system is required to facilitate the application of external corrosion control. These devices should be properly selected for temperature, pressure, chemical resistance, dielectric resistance, and mechanical strength. Installation of isolation devices should be avoided or safeguarded in areas in which combustible atmospheres are likely to be present. Locations at which electrical isolating devices should be considered include, but are not limited to, the following:

4.3.1.1 Points at which facilities change ownership, such as meter stations and well heads;

4.3.1.2 Connections to main-line piping systems, such as gathering or distribution system laterals;

4.3.1.3 Inlet and outlet piping of in-line measuring and/or pressure-regulating stations;

4.3.1.4 Compressor or pumping stations, either in the suction and discharge piping or in the main line immediately upstream and downstream from the station;

4.3.1.5 Stray current areas;

4.3.1.6 The junction of dissimilar metals;

4.3.1.7 The termination of service line connections and entrance piping;

4.3.1.8 The junction of a coated pipe and a bare pipe; and

4.3.1.9 Locations at which electrical grounding is used, such as motorized valves and instrumentation.

4.3.2 The need for lightning and fault current protection at isolating devices should be considered. Cable connections from isolating devices to arresters should be short, direct, and of a size suitable for short-term high-current loading.

4.3.3 When metallic casings are required as part of the underground piping system, the pipeline should be electrically isolated from such casings. Casing insulators must be properly sized and spaced and be tightened securely on the pipeline to withstand insertion stresses without sliding on the pipe. Inspection should be made to verify that the leading insulator has remained in position. Concrete coatings on the carrier pipe could preclude the use of casing insulators. Consideration should be given to the use of support under the pipeline at each end of the casing to minimize settlement. The type of support selected should not cause damage to the pipe coating or act as a shield to cathodic protection current.

4.3.4 Casing seals should be installed to resist the entry of foreign matter into the casing.

4.3.5 When electrical contact would adversely affect cathodic protection, piping systems should be electrically isolated from supporting pipe stanchions, bridge structures, tunnel enclosures, pilings, offshore structures, or reinforcing steel in concrete. However, piping can be attached directly to a bridge without isolation if isolating devices are installed in the pipe system on each side of the bridge to electrically isolate the bridge piping from adjacent underground piping.

4.3.6 When an isolating joint is required, a device manufactured to perform this function should be used, or, if permissible, a section of nonconductive pipe, such as plastic pipe, may be installed. In either case, these