Cathodic Protection Shielding by Pipeline Coatings

Greg Ruschau
Jeff Digulio
ExxonMobil Upstream Company

This presentation includes forward-looking statements. Actual future conditions (including economic conditions, energy demand, and energy supply) could differ materially due to changes in technology, the development of new supply sources, political events, demographic changes, and other factors discussed herein (and in Item 1A of ExxonMobil’s latest report on Form 10-K or information set forth under “factors affecting future results” on the “investors” page of our website at www.exxonmobil.com). This material is not to be reproduced without the permission of Exxon Mobil Corporation.
Outline

• Industry definition of CP Shielding
• Factors necessary for CP Shielding
• Issues for different coating systems
• How should CP Shielding be viewed
What is CP Shielding?

- Definition (from NACE SP0169, Control of External Corrosion on Underground or Submerged Metallic Piping Systems): Preventing or diverting the cathodic protection current from its intended path

What are the implications of this:

- The *function* of a coating is to separate the pipe surface from electrolyte, so CP is inherently shielded
- *Properly* designed coatings, which act as strong dielectrics, *should* shield CP
Why is this distinction important?

1. Regulatory reasons
 - CFR192.112: to operate at alternative MAOP:
 - **Coating.**

 (f) The pipe must be protected against external corrosion by a non-shielding coating.

 (2) Coating on pipe used for trenchless installation must be non-shielding and resist abrasions and other damage possible during installation.

 - Not clear or obvious what is meant by non-shielding coating
 - Interpretation left to individual, or to a regulator
Why is this distinction important?

2. Integrity Management

a) Pipeline Integrity is mostly managed by close interval surveys (CP potentials) and remote coating surveys – DCVG, ACVG, Pearson survey, coating conductance, others.

b) Pipeline Integrity can be managed by ILI, but only in piggable sections, and is a lagging indicator of a corrosion mitigation problem

• When CP shielding is present, must overlay (a) and (b), then identify that a problem exists

• No actual inspection tool for CP shielding, so difficult to address with integrity management plans
Function of Pipeline Coatings

• Most pipeline coatings are physical barriers by design, which isolate the metal pipeline from the surrounding environment – conductive electrolyte.

• A risk for corrosion exists at locations where (1) the coating disbands and (2) electrolyte is able to enter between the pipe surface and the coating.
 • For coatings that allow water to permeate directly, cathodic protection current may flow through the coating to the pipe surface.
 • For those coatings that do not allow for water permeation, shielding must be further evaluated.

• The main issue is not whether the stand-alone coating is an insulator, but whether the coating has a tendency to disband such that CP shielding occurs: i.e. water is present and polarization of the exposed steel surface is not possible
 • Coatings with superior adhesion to the pipe and between layers (for multilayer systems) will demonstrate a low risk of shielding CP current.
Consequences of Problematic CP Shielding

- Possibility of undetectable external corrosion if disbonded
- Extra bellhole digs required to verify CIS/ILI overlays

Corrosion due to shielding at girth weld by heat shrink sleeve
Damages from CP Shielding

• In cases where CP shielding is present, there are two degradative mechanisms:

1. Corrosion – rate will be at or less than ordinary corrosion rates in the local groundwater

2. Stress Corrosion Cracking (SCC) – rapid failure mechanism, but takes ~20 years before SCC initiates and becomes an integrity threat

• The most insidious factor for CP shielding is that it can exist for decades and will not be recognized, detected, or mitigated until an incident (Corrosion/SCC) occurs
How critical is the problem?

• All coatings, given the right conditions, *can* shield CP
• No coating will shield CP *if well bonded* to the substrate
• In the absence of electrolyte, shielding *cannot* occur
• CP shielding is, in fact, an outlier with regard to pipeline service – particular combinations of circumstances must be present
 • Don’t use the presumed possibility of CP shielding as the only selection criteria
 • **But**... shielding has been the cause of notable failures

• **Key points:**
 • All pipeline coatings will disbond to some extent
 • Coatings may disbond in such a way that they are conducive to CP shielding if other conditions are met
 • Some coatings show tendency to fail in a particular manner that may make them more susceptible to CP shielding
“Extreme” non-shielding: FBE

- BLISTERED FBE DISCOVERED UPON EXCAVATION, ELECTROLYTE FILLED
- NO CORROSION EVIDENCED, HIGH PH SOLUTION INDICATIVE OF ACTIVE CP UNDER THE BLISTERS
EXAMPLE

FBE Blisters – Microdefects Present

Defects enabling CP to permeate

INDUSTRY CONSENSUS IS THAT FBE COATINGS DO NOT TEND TO FAIL IN SUCH A WAY THAT CP SHIELDING OCCURS
“Extreme” CP Shielding – Polyethylene Tape Wrap

Soil stress leading to tape wrinkling and disbonding

Spiral corrosion on tape-wrapped pipelines
THERE ARE DOCUMENTED INDUSTRY CASES OF PIPELINE FAILURES ON DISBONDED TAPE-WRAPPED PIPELINES RESULTING FROM CP SHIELDING (NEB report MH-2-95, 1996)
Bitumenous Enamels

• Wrapped with felt/asbestos, can fail in multiple ways
 • If bitumen separates from wraps, non-shielding
 • If bitumen + wrap disbond as unit, shielding possible
2-Layer Extruded Polyethylene

• Can disbond from soil stress
• Soft adhesive allows movement of topcoat vs. primer – shielding can occur, but less common vs. tape wraps

WRINKLING
Liquid Epoxies/Polyurethanes

- Often fail by blistering – defects in blisters allow CP
- If applied very thick, failure mode less likely to be blistering, shielding possible
3-Layer Polyolefins

There are two major ways in which these coatings can fail:

1. Mechanical damage

 • Typically from backfill/bedrock/handling/excavation damage - current flow is allowed through the perforation; therefore, CP shielding is not a concern.

2. Coating disbondment

 • Polyolefin coatings do not absorb water and thus do not fail by blistering.
 • Polyolefin coating disbondment is a result of poor initial bonding, due to the use of intrinsically poor adhesives and/or substandard surface preparation/application. Disbondment is uncommon in modern 3LPE/3LPP.

 • 3-layer coatings have very high lap shear strength – excellent adhesion through the system
 • The most important activities for 3-Layer coatings are qualification (product system and applicator) and QA/QC throughout production.
 • With proper QC, shielding has not been a problem in 3-layer polyolefins.
Geotextile-backed Tapes

• Mastic with woven backing, allows CP through tape overlaps – no shielding problems
• Susceptible to disbonding from soil stress like conventional tapes
Current industry interests

• Lab tests for shielding

• Focus on local coating properties only – ignore the fact that a SET of conditions is what is important
Under-Appreciated Facts About CP Shielding

• CP shielding is not an inherent coating property, it is a set of conditions which must be met
 • “Proving” shielding is very difficult – always other factors

• Other features can result in CP shielding:
 • Pipe buried in area with significant bedrock
 • Obstructions – vaults, sheet underliners (tank farms)
 • Poorly designed/installed CP system

• To date, there have not been any reported cases of CP shielding in subsea pipelines
 • High electrolyte conductivity lead to low IR drop
How should CP shielding be evaluated

• Evaluate all factors involved in shielding
• Possible for shielding tendency to vary significantly along the same pipeline system
Summary / Conclusions

• CP shielding is a complex issue, it is not an intrinsic coating property

• All coatings designed to be good insulators – key is knowing how a coating tends to fail

• Historically, FBE coatings show lowest tendency to shield CP, PE tape wraps show highest tendency
Summary / Conclusions

• Laboratory tests help indicate local coating properties, but can be misinterpreted into a “go / no-go” result

• Must evaluate more than just initial coating selection to get more accurate assessment of the potential for CP shielding problems in a pipeline system